Pulmonary pressure, cardiac output, and arterial oxygen saturation during exercise at high altitude and at sea level.
نویسندگان
چکیده
The response elicited by exercise on pulmonary pressure, cardiac output, and arterial oxygen saturation in 35 lifetime residents of high altitude has been studied at high altitude (14,900 feet above sea level), and 22 residents of low altitude have been studied at sea level. A procedure combining cardiac catheterization, arterial cannulation, and spirometry was carried out. The exercise was moderate and was performed in supine position using a bicycle ergometer, the work load being 300 kg-m/min/m2 and the average increase of the oxygen uptake being 4.7 times at sea level and 4.8 times at high altitude. Both at .sea level and at high altitude the cardiac output augmented during exercise proportionally to the increase in oxygen uptake, and thus followed the pattern of response described by other authors. The cardiac output as well as the oxygen intake, for the magnitude of exertion performed in this study, was almost the same at sea level and at high altitude. The cardiac output rose during exercise almost exclusively as a result of an increase in the heart rate, with the stroke volume remaining practically constant. Despite similar increase in cardiac output, the response of pulmonary pressure was smaller for sea-level subjects than for the high-altitude subjects. Increments of mean pulmonary pressure bf nearly 50% and 100% were observed on exercise at sea level and at high altitude, respectively. During exercise the arterial oxygen saturation did not change in the sea-level studies, but decreased significantly in the high-altitude studies. The decrement observed in high-altitude residents is related to a fall in arterial pO2 which at resting conditions is placed on the steep part of the oxygen dissociation curve.
منابع مشابه
A Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude
At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...
متن کاملAlbnormal Circulatory Responses to High Altitude in Subjects with a Previous History of High - Altitude Pulmonary Edema
In five men with a history of susceptibility to high-altitude pulmonary edema (HAPE), hemodynamics and pulmonary gas exchange were measured at sea level, and again 24 hours following ascent to an altitude of 3,100 m. At sea level, all findings were essentially normal including a mean pulmonary arterial pressure (Ppa) of 13.8 + 1.9 mm Hg. None of the subjects developed clinically detectable pulm...
متن کاملAbnormal circulatory responses to high altitude in subjects with a previous history of high-altitude pulmonary edema.
In five men with a history of susceptibility to high-altitude pulmonary edema (HAPE), hemodynamics and pulmonary gas exchange were measured at sea level, and again 24 hours following ascent to an altitude of 3,100 m. At sea level, all findings were essentially normal including a mean pulmonary arterial pressure (Ppa) of 13.8 + 1.9 mm Hg. None of the subjects developed clinically detectable pulm...
متن کاملSildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia.
Sildenafil causes pulmonary vasodilation, thus potentially reducing impairments of hypoxia-induced pulmonary hypertension on exercise performance at altitude. The purpose of this study was to determine the effects of sildenafil during normoxic and hypoxic exercise. We hypothesized that 1) sildenafil would have no significant effects on normoxic exercise, and 2) sildenafil would improve cardiac ...
متن کاملO2 extraction maintains O2 uptake during submaximal exercise with beta-adrenergic blockade at 4,300 m.
Whole body O2 uptake (VO2) during maximal and submaximal exercise has been shown to be preserved in the setting of beta-adrenergic blockade at high altitude, despite marked reductions in heart rate during exercise. An increase in stroke volume at high altitude has been suggested as the mechanism that preserves systemic O2 delivery (blood flow x arterial O2 content) and thereby maintains VO2 at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 33 2 شماره
صفحات -
تاریخ انتشار 1966